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Bounds for the elastic constants 
of a unidirectional f ibre composite: 
a new approach 

I. M. W A R D ,  A. P. W I L C Z Y N S K I *  
IRC in Polymer Science and Technology, University of Leeds, Leeds LS2 9JT, UK 

Series-parallel and parallel-series models are used to calculate upper and lower bounds for 
a unidirectional fibre composite. It is shown that this simple approach produces comparatively 
close bounds which agree well with those calculated from more sophisticated analytical methods. 
This approach may be used for initial estimates of composite properties, e.g. when characterizing 
a new material. In some cases this may be sufficient for the design of simple composite structures. 

1. Introduction 
Following the classic papers of Voigt [1] and Reuss 
[2] there has been considerable interest in the calcu- 
lation of upper and lower bounds for the elastic con- 
stants of crystalline aggregates, partially oriented 
polymers [3] and fibre-reinforced composites [4, 5]. 
In this paper we present a simple method for obtain- 
ing bounds for the elastic constants of a unidirectional 
fibre composite. In one sense, such bounding calcula- 
tions have been superseded in recent years by finite- 
element methods [6] and even more recently by 
analytical methods [7] which give exact solutions. We 
will, however, show that our approach gives surpris- 
ingly close upper and lower bounds for all the elastic 
constants, and therefore because of its simplicity may 
be preferable for some purposes to the much more 
lengthy exact procedures. 

2. Theory 
2.1. The  mode l  c o m p o s i t e  
A model composite is assumed, consisting of uni- 
axially oriented square cross-section fibres equally 
spaced in a homogeneous matrix (Fig. 1). For the 
purposes of the present simple calculation, it is only 
necessary to consider an elementary cell of square 
cross-section with a fibre placed in one corner (Fig. 2). 

2.2. A s s u m p t i o n  
1. There is a perfect bond between the matrix and 

the fibres. 
2. Each part of the elementary unit cell (fibre or 

matrix) behaves as a homogeneous elastic material. 
3. There is continuity of strain between the two 

phases. 
4. Local torques produced by stresses within the 

two phases are ignored. 

2.3. Defini t ion of e las t ic  c o n s t a n t s  
Although this approach is applicable for the case 
where the matrix shows transverse isotropy with the 
axis of symmetry parallel to the fibre axis, it will be 
assumed for the sake of simplifying the algebra that 
the matrix is isotropic. The mechanical properties of 
the matrix and the fibres can then be described most 
simply by their engineering elastic constants. These 
are Em (tensile modulus) and Vm (Poisson's ratio) 
for the matrix and five independent constants 
E33,E11,v13,v12 and G13 where G13 is the longitud- 
inal shear modulus for the fibre. It is also convenient 
to introduce rigidity ratios 

~t = E33/Em 

~ = El~/E~ (1) 

which will be used throughout the calculations. An 
appropriate volumetric reinforcement factor F is used 

Vf 
F - (2) 

Vf A('- gm 

where Vf, Vm are the fibre and matrix volume frac- 
tions, respectively. To obtain geometric relations from 
the global reinforcement factor F a geometric rein- 
forcement fac tor f i s  then introduced, such that f =  F. 
For a square-section fibre, its linear dimensions would 
be f l / 2  xf~/z, so that remaining matrix has dimen- 
sions 1 x (1 _ f l / z )  and f l /2 x (1 fl/2).  This geomet- 
ric factor may be further modified, depending on the 
structure of the composite. 

As a quadrilateral structure of cross-section of the 
composite is uncommon, an "equivalent reinforce- 
ment factor" f can be introduced depending on the 
actual structure of the composite cross-section. For 
the most probable hexagonal structure, from the ratio 
of free volumes (for cylindrical fibres) it follows that 

2 
f = 3~/~ F (3) 
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Figure 1 The model composite. 

4 

-'-1 

Figure 2 Elementary cell in the model composite. R, S, T, U and 
V are average external stresses. 

If full compatibility of internal strains is to be achieved 
as well, a further correction to the reinforcement factor 
can be made, e.g. as presented in a paper by one of the 
authors [-7], leading to a value 

2(31/2 ) 
f - - -  F (3a) 

K 

which assumes that the unit material cell is embedded 
in the composite material, rather than in the poly- 
meric material. 

2.4. Ca lcu la t ion  of b o u n d s  
The unidirectional fibre composite has five independ- 
ent elastic constants E33, E l l ,  VI3, V12 and G13 for 
which lower and upper bounds will be calculated as 
E3L3, EI~I, v~3, v~2, G~3 and E3u3, E~I, v~3, v~2, G~3, 
respectively. The lower and upper bounds are ob- 
tained by considering the two possible series-parallel 
connectivity situations as illustrated in Fig. 2. In two 
dimensions these schemes are familiar as the 
Takayanagi series-parallel and parallel-series models 
(see, for example, Ward [8] p. 300). 

For this case two separate sets of boundary condi- 
tions can be considered for simplification of calcu- 
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lations, based on the independence, in principal 
coordinates of orthotropic materials, of shear and 
volumetric strains. Assuming external shear stresses to 
be zero (U = V = 0) the following relations are valid. 

Static equilibrium conditions of the unit volume are 
represented by 

(ir( 1 _ _ f l / 2 )  + (i~f + ( i t f l / 2 ( 1  _ f l / 2 )  = R 

(if f l / 2  + (im( l _ _ f l / 2 )  = S (4) 

( i c f l / 2  + (id( 1 _ _ f l / 2 )  = T 

Strains in the layer containing the reinforcement de- 
noted below by primes (') are of the form 

t 
E22 

I (if (ic (is I fl/2 V21 --  _ _  V31 
E l l  E l l  Exl ' 

+ EmVm --  EmmVm ( 1 - - f  

(ic (if (is 
- -  V 2 1  - -  _ _  V31 

Ell  Ell  Ell  

(id (if (it 
- -  Em EmVm --  ~mVm" (5) 

t 
E33 

(Is (ic O'f 
--  E33 E3~ v13 - -  E33 v13 

(it (id (if 
- -  V m  - -  ~- -  V m 

Em Em Lm 

where compatibility of strains between the two com- 
ponents of the layer are also ensured. Strains in the 
remaining, unreinforced part of the composite are 

T 
~ 1 1  - -  Em Em Vm - -  E m  Vm 

T (im (ir 
~;22 --  Em Em Vm --  Em Vm (6) 

(ir (im T 
833 --  Em Em Vm --  Em Vm 

given by 

(im (ir 

The only remaining conditions to be fulfilled are the 
compatibility conditions between the reinforced and 
unreinforced layers of the composite. These are 

~11 = ~Ill = ~11 

d z z f  1/2 + e22(1 _ f l / 2 )  = ~22 (7) 

E33 = E33 = ~33 

where the bar (-)  denotes average values of strain for 
a composite as a whole. 

Using Equations 4-7 it is possible, after inserting 
Equations 1 and 2, to obtain a set of equations 

Or(1 __ f l / 2 )  + ( i~f  + ~ t f l / 2 ( l  _ f l / 2 )  = R 

(if f l / 2  + ~ m ( l  _ f l / 2 )  = S 

( i t  f l / 2  + (id( 1 _ f l / 2 )  = T 

(is - -  (icV21 - -  O'fV21 - -  ~l ( ( i t  - -  (idVm --  (ifVm) ~" 0 

(8) 



(ic - -  (ifV32 - -  O'sV12 - -  ~2((id - -  (ifVm --  (itVm) = 0 

(It - -  (idVm --  O'fVm --  (ir -l- (imVm --  T v  m 

((if - -  (icV32 - -  ( i s V 1 2 ) f  1/2 + ~2(( i f  - -  (idVm --  (itVm) 

x (1 _f l /2 )  _ ~2((im - -  (irVm) = - - ~ 2 T V m  

describing the case under consideration. 
Assuming now homogeneity of the composite, 

loaded as depicted in Fig. 3, constitutive relations for 
the unit cell take the form 

1 
~11 - -  (S - -  V i l T - -  v 3 1 R  ) 

E11 

1 
~22 --  ( T -  V31R - -  v 2 1 S  ) (9) 

El l  

1 
~33 --  (R - -  V13 S - -  V13 T )  

E33 

where the bar (-)  describes average values for the 
composite as a whole. Combining Equations 7 and 9, 
values of bounds for particular constants can be 
found. 

It can be also seen both from Equations 9 and 
Fig. 2 that interchanging external stresses S and 
T leads to serial and parallel connection of the two 
layers in respective directions. 

There are finally three cases of interest: 

Case 1 R =  1 S = 0  T = 0  

C a s e 2  R = 0  S =  1 T = 0  

Case 3 R = 0  S = 0  T =  1 

which will be treated independently. 

Case 1 

1 1 
E33 --  Em ((ir - -  (imVm) 

V31 1 

E l l  

~r f ~/2 

(10) 

( l la)  

E m ( ( i  m - -  (irVm) ( l lb)  

E11 Em 
((id - -  (ifVm --  (itVm) 

1 - -  f l / 2  

Em 
- - ( ( i ~  + (im)Vm (llc) 

3 J  

I 2 

Figure  3 Loads on the composite. 
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Case 2 

V13 1 

E33 Em 
(( i t  - -  O'mVm) (12a) 

1 1 
~-- mE--((im - -  ( i r V m )  ( 1 2 b )  

E l l  

Case 3 

Ce21 
- -  ((id - -  (ifVm - -  O'tVm) 

E l l  

f l /2 1 _f l /2  
x -  - ((ira - (ir)Vm - -  (12C) 

Em Em 

'r 1 
- ((ir -- (imVm -- Vm) (13a) 

E33 Em 

V21 1 
- ( ( i m  - -  ( i r V m  - -  Vm) (13b) 

Ell Em 

1 fl/2 
E11 --  ((id - -  (ifVm --  (itVm) E ~  

1 - f l / 2  
-~- (1 - -  (imVm --  O ' r V m ) -  (13c) 

Em 

where for calculation purposes the external stresses 
are taken as unity. 

It may be now clearly seen that the proposed ap- 
proach gives directly bounds for the following: 

V31 from Equations l l b  and l l c  
E l l  

v13 from Equations 12a and 13a 
E33 

1 

E11 
- -  from Equations 12b and 13c 

v21 from Equations 12c and 13b 
El l  

and a single value for 1/E33 given by Equation 1 la. To 
obtain bounds for this modulus the following proced- 
ure was adopted. From general symmetry relations for 
an orthotropic material we have 

E33 
V13 = V 3 1  Ell  (14) 

This means it is possible to use Equations 1 lb and 1 lc 
to obtain bounds for v13 and insert their values into 
Equations 12a and 13a, thus obtaining the necessary 
bounds for E33. 

However, analytical solutions of a set of seven sim- 
ultaneous Equations 8 for the unknown values of 
stresses (ic, (ia, (if, (im, (it, (is, (it are totally un- 
manageable. To obtain the final results a numerical 
computer program was therefore prepared and further 
numerical calculations were performed. 

The second separate case is when 

R = S = T = 0 (15) 

where either U =  1 and V = 0 o r  U = 0 a n d  V =  1. 
This case is sufficiently simplified for final analytical 
values to be obtained for the bounds of the remaining 
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constant G13, while the constant (7t2 can be easily 
calculated from the relation 

dl  2 -- Ell (16) 
2(1 + V12 ) 

For the case when U = 1 and V = 0 it is easily found 
that all stresses except o~ and 0 .  can be assumed to be 
zero and there is only one equation of equilibrium 

o, fl/2 + On(1 -- ft/2) = 1 (17) 

Strain compatibility conditions demand that 

01 f l / 2 )  __ On 01 f l /2  + (1 -- (18) 
G13 G~m Gm 

while the constitutive relation gives 

1 on 
- (19) 

G13 Gm 

Performing the necessary calculation, it is easily found 
that the upper bound of this modulus is 

Gu31 =Gm Gmft/2(1 _ _ f l / 2 )  _}_ G13[1  - f l / 2 ( 1  _ f l / 2 ) ]  

E m = 3.0 GPa,  Vm = 0.3; Ef = 70 GPa,  vf = 0.25. 
These data were used to produce exemplary graphs. 
Other values were used as presented in the tables. 

The results are shown in Tables I - IV  and Fig. 4. It 
can be seen that the upper and lower bounds are 
always quite close, comparing very favourably with 

T A B L E  II Model composite calculations for matrix E m 
= 4 . 0 G P a  and Vm = 0.35, reinforcement Ef = 8 0 G P a  and 
vf = 0.25, volume fraction f =  0.6 

Parameter Lower bound Upper bound 

E33 (GPa) 55.86 57.48 
E11 (GPa) 22.74 24.84 
v31 0.27 0.28 
v12 0.17 0.19 
GI3 (GPa) 6.23 6.94 
G12 (GPa) 9.72 10.48 

T A B  L E I I I Model composite calculations for matrix 
E m = 3 0 G P a  and Vm = 0.35, reinforcement E e = 2 2 0 G P a  and 
vf = 0.25, volume fraction f =  0.5 

Gmf t/2 + G13(1 _ f l / 2 )  

(20) 
E33 (GPa) 

Similarly a straightforward solution can be found for E11 (GPa) 

the case U = 0, V = 1, when only Op and oq are not  v,3 
zero. The only equilibrium equation is v,2 

G~3 (GPa) 
Op(1 - f l /2 )  + oqfa/2 = 1 (21) G12 (GPa) 

while the only compatibility condition is 

Oq Op 
- (22) 

G31 Gm 

and the constitutive equation takes the form 

_ 1 1 Op f l /2  + (1 - -  f l / 2 )  (23) E33 (GPa) 

G13 Gm Gram El1 (GPa) 
v13 

This leads directly to the value of the lower bound of v,2 
the modulus, which takes the form G,3 (GPa) 

G12 (GPa) 
Gm(1 _ _ f t / 2 )  + G13fl/2 

G~3 = Gmrl-fl/2(1 _fl/2)] + G13ft/2(l _.fl/2) 
(24) 

Parameter Lower bound Upper  bound 

136.53 143.12 
90.77 97.40 

0.28 0.29 
0.24 0.26 

27.79 30.73 
36.63 38.77 

T A B L E  IV  Model composite calculations for matrix 
E m =  4 .0GPa  and Vm =0.3 ,  reinforcement Ef = 1 .0GPa and 
vf = 0.4, volume fraction f = 0.5 

Parameter Lower bound Upper bound 

2.23 2.32 
2.08 2.13 
0.35 0,35 
0.33 0.34 
0.70 0.75 
0.78 0.79 

100 

3. R e s u l t s  f o r  a t y p i c a l  s y s t e m  
The theory outlined has been examined by calculating 
the values of the elastic constants  for a unidirectional 
glass fibre compos i te  where we have assumed 

T A B  L E I Model composite calculations for matrix E m = 1.0 GPa  
and Vm = 0.45, reinforcement Er = 120 GPa  and vf = 0.3, volume 
fraction f = 0.3 

Parameter Lower bound Upper bound 

E33 (GPa) 38.03 46.90 
El 1 (GPa) 5.44 6.93 
v~3 0.37 0.42 
vl 2 0.35 0.44 
G13 (GPa) 0.63 0.82 
G12 (GPa) 2.02 2.41 
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Figure4 Dependence of bounds on the reinforcement factor f: 
(a) E33, (b) E ~ ,  (c) v~3, (d) GI3, (e) G12. 
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the more sophisticated bounding methods. Fig. 4 pre- 
sents the dependence of bounds of particular constants 
on the reinforcement factor f All values were pro- 
duced using the computer program ANREBO (AN- 
isotropic REinforcement BOunds), which also allows 
the prediction of the elastic constants bounds for an 
anisotropic reinforcement. 
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